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Abstract
The eigenvalue moment method (EMM) developed by Handy (J. Phys. A:
Math. Gen. 2001 34 L271, 5065), Handy et al (J. Phys. A: Math. Gen. 2001
34 5593), and Handy and Xiao-Qian Wang (J. Phys. A: Math. Gen. 2001 34
8297), which generates converging lower and upper bounds to the (complex)
discrete state energies, is extended to the case of discrete states with non-Real
support. In particular, Bender and Boettcher (Phys. Rev. Lett. 1998 80 5243)
have argued on the reality of the discrete state spectrum for the −(iX)N

potential. For N (integer) � 4, such PT-invariant solutions can only exist on
appropriate complex contours. We develop and apply the necessary EMM
formalism to such cases. In particular, the restriction of EMM to the anti-
Stokes angles significantly increases the convergence rate of the bounds.

PACS numbers: 03.65.−W, 03.65.Ge

1. Introduction

There has been much interest recently in understanding the spectral properties of certain
manifestly PT-invariant Schrödinger Hamiltonians with the generic potential structure:
V (x) = P(ix), whereP is an arbitrary polynomial with real coefficients. In particular, Bender
and Boettcher [1] argued, based on a conjecture by Bessis, that the discrete states (within the
complex-x plane, Cx) of the potential −(ix)N must be real. This conjecture has been affirmed
by Dorey et al [2, 3]. However, Delabaere and Trinh (2000) cautioned that manifest PT
invariance of the Hamiltonian does not preclude the existence of symmetry-breaking discrete
state solutions, with (necessarily) complex eigenenergies. Using asymptotic analysis methods,
they studied the spectral properties of the potential −(ix)3 + iax and found that for particular
a-parameter regimes, there could exist PT-symmetry breaking solutions. This was also verified
by Handy [4, 5], and Handy et al [6], through the generation of converging lower and upper
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bounds to the various real/complex eigenenergies. Subsequent studies by Bender et al [7]
confirmed a similar behaviour for the potential (ix)4 + iax.

As noted, an important theoretical and numerical confirmation of most of these results has
resulted from the spectral bounding methods of Handy, Bessis and co-workers [8, 9], referred
to as the eigenvalue moment method (EMM). Provided the Schrödinger Hamiltonian can be
transformed into a suitable non-negative representation for the desired solution, application
of EMM will result in the generation of converging bounds to the corresponding (complex)
eigenenergy.

In very recent work, Handy [4, 5], and Handy and Wang [10] showed that the
one-dimensional Schrödinger equation, for arbitrary potential, and on any contour in the
complex-x plane (ξ ∈ � → x(ξ) ∈ C), can be transformed into an equivalent, fourth-order,
linear differential equation for the probability density, S(ξ) ≡ |�(x(ξ))|2. Restricting this to
the case of rational fraction potentials, it then follows that the power moments of the bound
state solution, µ(p) ≡ ∫

dξ ξpS(ξ), will satisfy a linear, recursive, moment equation.
The energy variable is a parameter in the moment equation. Since they are moments

of a non-negative measure, one can constrain them to satisfy the necessary moment problem
theorems [11], which in turn constrain the eigenenergy through converging lower and upper
bounds (for both the real and imaginary parts of the energy). The same philosophy can be
used in quantum scattering for bounding Regge poles [12].

The EMM procedure has been demonstrated to work for the complex, symmetry breaking,
solutions of the −(ix)3 + iax potential [5, 6]. However, in this case the bound states exist
along the real axis. In their seminal work, Bender and Boettcher [1] discovered the existence
of PT-invariant solutions for the −(iX)N potential lying within certain wedges in the complex
plane, Cx , which do not include the real axis for (integer) N � 4.

Taking x ≡ |x|eiθ , the wedges within which the bound states lie are defined by

θL,R − �̃

2
< θ < θL,R +

�̃

2
(1)

where

θL,R =
{−π + N−2

N+2
π
2 ‘L (left)’

−N−2
N+2

π
2 ‘R (right)’

(2)

and

�̃ = 2π

N + 2
. (3)

In this work we examine the efficiency of the EMM procedure for N � 4. The present
analysis is important for several reasons. The first is to confirm the versatility of the EMM
procedure. The second is to prepare for a more comprehensive analysis of other PT-symmetry
breaking Hamiltonians corresponding to the −(ix)N + iax potentials.

Our EMM analysis will involve a contour made up of the two semi-infinite rays lying
within the left and right wedges, as represented by

{x | EMM complex contour} = {ξe−iθ | ξ : ∞ → 0} ∪ {ξe+iθ | ξ : 0 → ∞} (4)

for any θ within the ‘right’-handed wedge, as defined earlier.
We define moments along each of the two parts of the contour. Not surprisingly, we

find that the order of the necessary moment equations reduces significantly for θ = θR,
corresponding to the anti-Stokes line, along which the wavefunction decays most rapidly.
Consequently, the EMM bounds converge fastest when θ = θR.

In the following sections we discuss in detail the necessary relations for the N = 4 case,
and then the general theory for arbitrary N. We find that the moment equation structure for the
N = even and N = odd is very different.



Extension of spectral bounding method to discrete states with non-Real support 9909

2. The −(iX)4 potential

2.1. The nonnegativity quantization representation

We will adopt the formalism developed by Handy and Wang [10]. Consider the Schrödinger
equation

−∂2
x�(x) + V(x)�(x) = E�(x) (5)

for complex energy, E, and complex potential, V(x). Assume that the (complex) bound state,
�(x), lies within the complex-x plane, along some infinite contour, C. Let x(ξ) define a
differentiable map from a subset of the real axis to the entire complex contour:

x(ξ): ξ ∈ � → C. (6)

The transformed Schrödinger equation is

−(D(ξ)∂ξ )
2�(ξ) + V (ξ)�(ξ) = E�(ξ) (7)

where D(ξ) ≡ (∂ξx)
−1 and V (ξ) ≡ V(x(ξ)). Alternatively, we may rewrite the above as

A(ξ)∂2
ξ �(ξ) + B(ξ)∂ξ�(ξ) + C(ξ)�(ξ) = 0 (8)

where A(ξ) ≡ −(D(ξ))2, B(ξ) = − 1
2∂ξ (D(ξ))2 and C(ξ) = V (ξ) − E.

We define

S(ξ) = �∗(ξ)�(ξ) (9)

P(ξ) = � ′∗(ξ)� ′(ξ) (10)

J (ξ) = �(ξ)∂ξ�
∗(ξ) − �∗(ξ)∂ξ�(ξ)

2i
(11)

and

T (ξ) = ∂ξ�(ξ)∂2
ξ �

∗(ξ) − ∂ξ�
∗(ξ)∂2

ξ �(ξ)

2i
. (12)

One can then transform the Schrödinger equation into four coupled differential equations
for the preceding configurations (i.e. A = AR + iAI , etc):

(S′′(ξ) − 2P(ξ))AR(ξ) + S′(ξ)BR(ξ) + 2S(ξ)CR(ξ) + 2(BI (ξ) + AI(ξ)∂ξ )J (ξ) = 0 (13)

(S′′(ξ) − 2P(ξ))AI (ξ) + S′(ξ)BI (ξ) + 2S(ξ)CI (ξ) − 2(BR(ξ) + AR(ξ)∂ξ ))J (ξ) = 0 (14)

P ′(ξ)AR(ξ) + 2T (ξ)AI (ξ) + 2P(ξ)BR(ξ) + S′(ξ)CR(ξ) − 2J (ξ)CI (ξ) = 0 (15)

and

P ′(ξ)AI (ξ) − 2T (ξ)AR(ξ) + 2P(ξ)BI (ξ) + S′(ξ)CI (ξ) + 2J (ξ)CR(ξ) = 0. (16)

Usually AI = 0 and the last equation simply serves to define T. In such cases, only
the first three equations are really coupled to each other. One can reduce these to one
fourth-order linear differential equation for S; however, it is preferable to explicitly work with
them, as given above, since in some cases they lead to additional moment constraints not
readily discernable by working solely with S.

Clearly, S and P are non-negative configurations which must be bounded (i.e. L1, since
� is L2) for physical solutions. Accordingly, we refer to the above as the non-negativity
quantization representation (NQR).

One can easily find a contour map that maps into the required wedges, as defined
previously. Thus, x(ξ) = eiθ ξ − e−iθ

ξ
, for ξ: 0 → ∞, will map from the left wedge into

the right wedge (for an appropriate, fixed, θ value). However, this choice leads to large order
polynomials in the above formulation, complicating the EMM analysis.



9910 Z Yan and C R Handy

Alternatively, we can work with the two contour maps xR,L = ξ e±iθ , ξ � 0, and for each
of these generate the corresponding {S, P, J} configurations. These configurations must then
be matched at the origin. This approach leads to simpler algebraic relations, and is the one
adopted throughout this work.

2.2. Obtaining the moment equations for −( ix)4 within the NQR formulation

Consistent with the works of Bender and Boettcher [1] and Dorey et al [2, 3], we will
assume that the discrete state of the −(ix)4 Schrödinger equation have real eigenenergy. The
corresponding differential equation is −� ′′ − x4� = E� . Its extension into the complex
plane will be denoted as

−� ′′(z) − z4�(z) = E�(z) (17)

where z = |z|eiθ = ξeiθ , |z| = ξ � 0.
Within the right wedge the Schrödinger equation becomes

� ′′
R(ξ) + ξ4 e6iθ�R(ξ) + E e2iθ�R = 0. (18)

Similarly, within the left wedge, z = ξe−i(π+θ) = −ξe−iθ , the corresponding differential
equation becomes

� ′′
L(ξ) + ξ4 e−6iθ�L(ξ) + E e−2iθ�L(ξ) = 0. (19)

Upon comparing with equation (8), we identify the coefficient functions as A = 1, B = 0,
C(ξ) = ξ4 e±6iθ + E e±2iθ . Note that we do not explicitly denote the ‘right-left’ coefficient
function C(ξ), since the notation ‘CR’ will be used to refer to the real part of the function.
Thus C(ξ) = CR(ξ) + iCI (ξ), where

CR(ξ) = ξ4C6 + EC2 (20)

and

CI (ξ) = ±ξ4S6 ± ES2 (21)

involving Cn = cos(nθ) and Sn = sin(nθ). The ± refers to the relevant expression for the
R (right) and L (left) wedges, respectively.

The corresponding NQR equations become

S′′(ξ) − 2P(ξ) + 2(ξ4C6 + EC2)S(ξ) = 0 (22)(±ξ4S6 ± ES2
)
S(ξ) − J ′(ξ) = 0 (23)

and

P ′(ξ) +
(
ξ4C6 + EC2

)
S′(ξ) − 2

(±ξ4S6 ± ES2
)
J (ξ) = 0. (24)

Again, the distinction between the right and left NQR configurations is implicitly assumed.
We define the power moments for the {S, P, J} configurations:

U(p) =
∫ ∞

0
dξ S(ξ)ξp (25)

V (p) =
∫ ∞

0
dξ P (ξ)ξp (26)

W(p) =
∫ ∞

0
dξ J (ξ)ξp. (27)
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We multiply each of the relations in equations (22)–(24) by ξp and integrate over [0, ∞),
making use of the integration-by-parts formulae:∫ ∞

0
dξ S′′(ξ)ξp = −δp,0S

′(0) + δp,1S(0) + p(p − 1)U(p − 2) (28)∫ ∞

0
dξ P ′(ξ)ξp = −δp,0P(0) − pV (p − 1) (29)∫ ∞

0
dξ J ′(ξ)ξp = −δp,0J (0) − pW(p − 1). (30)

The required {U,V,W } moment equations for p � 0 are

−δp,0S
′(0) + δp,1S(0) + p(p − 1)U(p − 2) − 2V (p)

+ 2[C6U(p + 4) + EC2U(p)] = 0 (31)

S6U(p + 4) + ES2U(p) ± [δp,0J (0) + pW(p − 1)] = 0 (32)

−δp,0P(0) − pV (p − 1) − C6(p + 4)U(p + 3) − EC2[δp,0S(0) + pU(p − 1)]

− 2[±S6W(p + 4)±S2W(p)] = 0. (33)

Again, implicit reference to the R (right) and L (left) wedges is assumed (i.e. S′
R,L(0), UR,L(p),

etc).
With respect to equation (32), it generates two different relations. For p = 0 it becomes

S6U(4) + ES2U(0) = ∓J (0). (34)

This defines a constraint on the U-moments. For p � 1 in equation (32) the W -moments are
generated from the U-moments (i.e. take p → p + 1 in equation (32)):

W(p) = ∓
(
S6U(p + 5) + ES2U(p + 1)

p + 1

)
p � 0. (35)

Since equation (31) serves to generate the V -moments in terms of the U-moments, we
can couple this with the previous relation and convert equation (33) into one moment equation
for the U-moments. Thus we get

−S(0)δp,2 +
S′(0)

2
δp,1 − P(0)δp,0 − C2ES(0)δp,0 + U(p − 3)

[
−p +

3p2

2
− p3

2

]

+ U(p − 1)[−2pC2E] + U(p + 1)

[
2E2S2

2

p + 1

]
+ U(p + 3)[−4C6 − 2pC6]

+ U(p + 5)

[
2ES2S6

p + 1
+

2ES2S6

p + 5

]
+ U(p + 9)

[
2S6

2

p + 5

]
= 0 (36)

for p � 0. This relation must be combined with the additional constraint in equation (34).
It is readily apparent that equation (36) separates into two distinct moment recursion

relations for the even and odd order moments. The moment equation in equation (36) reduces
to an even order moment equation for p = 2ρ + 1; whereas it becomes an odd order moment
equation for p = 2ρ. In turn, the even and odd order U-moments are themselves moments of
corresponding Stieltjes measures. Thus, in the first case

µ(ρ) ≡ U(2ρ) =
∫ ∞

0
dξ S(ξ)ξ2ρ =

∫ ∞

0
dη

1

2
√

η
S(

√
η) ηρ (37)

where ρ � 0 and η ≡ ξ2. In the second case

ω(ρ) ≡ U(2ρ + 1) =
∫ ∞

0
dξ S(ξ)ξ2ρ+1 =

∫ ∞

0
dη

1

2
S(

√
η) ηρ. (38)
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The respective moment equations become (i.e. p = 2ρ + 1, ρ � 0, in equation (36))

S′(0)
2

δρ,0 + µ(ρ − 1)

[
−(2ρ + 1) +

3(2ρ + 1)2

2
− (2ρ + 1)3

2

]
+ µ(ρ)[−2C2E(2ρ + 1)]

+ µ(ρ + 1)

[
E2S2

2

ρ + 1

]
+ µ(ρ + 2)[−4C6 − 2C6(2ρ + 1)]

+ µ(ρ + 3)

[
ES2S6

(
1

ρ + 1
+

1

ρ + 3

)]
+ µ(ρ + 5)

[
S6

2

ρ + 3

]
= 0 (39)

together with equation (34)

S6µ(2) + ES2µ(0) = ∓J (0) (40)

and (i.e. p = 2ρ, ρ � 0, in equation (36))

−S(0)δρ,1 − δρ,0[P(0) + C2ES(0)] + ω(ρ − 2)

[
−2ρ +

3(2ρ)2

2
− (2ρ)3

2

]

+ ω(ρ − 1)[−4ρC2E] + ω(ρ)

[
2E2S2

2

2ρ + 1

]
+ ω(ρ + 1)[−4C6 − 4ρC6]

+ ω(ρ + 2)[2ES2S6]

[
1

2ρ + 1
+

1

2ρ + 5

]
+ ω(ρ + 4)

[
2S6

2

2ρ + 5

]
= 0. (41)

2.3. Relating the boundary terms for the right and left wedges

Since the NQR configurations are generated from the wavefunction, one must carefully define
the correlations between the right and left wedge contributions to the respective boundary terms
dependent on {SR,L(0), PR,L(0), JR,L(0), S′

R,L(0)}. Of course, �(z) is analytic everywhere.
First, we have the following identities:

�R,L(ξ) = �(±ξe±iθ ). (42)

SR,L(ξ) = �R,L(ξ)�
∗
R,L(ξ) = |�R,L(ξ)|2. (43)

S′
R,L(ξ) = �R,L(ξ)�

∗′
R,L(ξ) + � ′

R,L(ξ)�
∗
R,L(ξ) = 2Re(�R,L�

′∗
R,L). (44)

PR,L(ξ) = � ′
R,L(ξ)�

′∗
R,L(ξ) = |� ′

R,L(ξ)|2. (45)

JR,L(ξ) = �R,L(ξ)�
∗′
R,L(ξ) − � ′

R,L(ξ)�
∗
R,L(ξ)

2i
= Im(�R,L(ξ)�

∗′
R,L(ξ)). (46)

From the derivative relation

� ′
R,L(ξ) = � ′(z)(±e±iθ ) (47)

it follows that

� ′
R,L(0) = (±e±iθ )� ′(z)|z=0. (48)

We define � ′(z)|z=0 = � and ±e±iθ = )±.
From �’s analyticity we have �R(0) = �L(0), therefore

SR(0) = SL(0). (49)

In addition, PR,L(0) = |� ′
R,L(0)|2 = |�)±|2 gives

PR(0) = PL(0). (50)

We can get S′
R , S′

L from

S′
R(0) = �(0)e−iθ�∗ + �∗(0)eiθ� = 2C1Re(�(0)�∗) + 2S1Im(�(0)�∗) (51)
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and

S′
L(0) = −�(0)eiθ�∗ − �∗(0)e−iθ� = −2C1Re(�(0)�∗) + 2S1Im(�(0)�∗). (52)

Similarly, for JR(0) and JL(0)

JR(0) = C1Im(�(0)�∗) − S1Re(�(0)�∗) (53)

JL(0) = −C1Im(�(0)�∗) − S1Re(�(0)�∗). (54)

Thus, as expected, �(0) and � ′(0) are the only required boundary conditions (in addition
to the specification of θ ). If we assume that the bound states are PT invariant (which is the
case in this work),

�∗(−x) = �(x) (55)

for x ∈ �, then from �’s analyticity at the origin we have

�(0) ≡ α = Real (56)

and

� ′(0) = � ≡ iβ = Imaginary. (57)

Inserting this above we have S(0) = α2, P(0) = β2 and

S′
R,L(0) = −2S1αβ (58)

JR,L(0) = ∓C1αβ. (59)

In particular, for PT-invariant solutions,

JR,L(0) = ±
(
C1S

′
R,L(0)

2S1

)
. (60)

2.4. Recursive structure of the moment equation(s)

The discussion in this section will implicitly assume that S6 �= 0 in equation (36), otherwise
the order of the finite difference/moment equation is reduced. The consequences of this are
examined in section 2.5.

At first sight, equation (41) seems to be the easier of the two moment equations to
study within the context of the EMM analysis. However, we note that the form of this
moment equation does not change for either the right or left wedge. In addition, despite
the previous results, we cannot impose any constraints on S (0) and P (0). Thus, in fact,
equation (41) cannot yield any bounds on the physical eigenenergy because it does not lead to
any correlation between the right and left wedge configurations.

Instead, the collective moment equation defined by equations (39)–(40) do relate both the
right- and left-hand wedges. More precisely, these moment equations depend on S′

R,L(0) and
JR,L(0) which in turn can be constrained in accordance with equations (58)–(59). The latter
define the crucial link between the {S, P, J } configurations in both wedges.

In the following analysis we implicitly work in terms of the right-wedge representation.
The linear, recursive structure of equation (39), tells us that all of the moments can be

generated through the expression

µ(ρ) =
5∑

,=0

M̃ρ,,(E)χ, ρ � 0 (61)

where

χ, ≡
{
µ(,) for 0 � , � 4
S′
R(0) for , = 5

(62)
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and

M̃,1,,2 =
{
δ,1,,2 for 0 � ,1,2 � 4
0 for 0 � ,1 � 4 ,2 = 5.

(63)

In addition, the M̃ρ,, matrix coefficients satisfy the moment equation in equation (39) with
respect to the ρ-index, for fixed ,:
δ,,5

2
δρ,0 + M̃ρ−1,,(E)

[
−(2ρ + 1) +

3(2ρ + 1)2

2
− (2ρ + 1)3

2

]
+ M̃ρ,,(E)[−2C2E(2ρ + 1)]

+ M̃ρ+1,,(E)

[
E2S2

2

ρ + 1

]
+ M̃ρ+2,,(E)[−4C6 − 2C6(2ρ + 1)]

+ M̃ρ+3,,(E)

[
ES2S6

(
1

ρ + 1
+

1

ρ + 3

)]
+ M̃ρ+5,,(E)

[
S6

2

ρ + 3

]
= 0. (64)

We can now focus on the additional constraint in equation (40). From equation (60) we
can express S′

R(0) in terms of {µ(0), µ(2)}. That is,

S′
R(0) = −2S1

C1
(ES2 µ(0) + S6 µ(2)). (65)

Substituting this relation in equation (61), we obtain

µ(ρ) =
4∑

,=0

M̃ρ,,(E) µ(,) − M̃ρ,5(E)

(
2S1

C1
(ES2 µ(0) + S6 µ(2))

)
. (66)

Regrouping, we have

µ(ρ) =
4∑

,=0

Mρ,,(E) µ, (67)

where

Mρ,,(E) =




M̃ρ,, for , �= 0, 2

M̃ρ,, −
(

2ES1S2

C1

)
M̃ρ,5(E) for , = 0

M̃ρ,, −
(

2S1S6

C1

)
M̃ρ,5(E) for , = 2.

(68)

Finally, we must impose a suitable normalization. We note that all of the independent
moments (i.e. the missing moments), {µ(,) | 0 � , � ms = 4}, are positive quantities. We
can impose the normalization

ms=4∑
,=0

µ(,) = 1 (69)

which is used to constrain the zeroth-order moment: µ(0) = 1 − ∑ms

,=1 µ(,). Incorporating
this within equation (67) results in

µ(ρ) =
ms∑
,=0

M̂ρ,,(E) µ̂(,) (70)

where

µ̂(,) ≡
{

1 if , = 0
µ(,) if , � 1

(71)

and

M̂ρ,,(E) ≡
{
Mρ,0(E) if , = 0
Mρ,,(E) − Mρ,0(E) if , � 1.

(72)



Extension of spectral bounding method to discrete states with non-Real support 9915

2.5. Numerical implementation of EMM for −( ix)4 potential

Since the µ(ρ) moments are the moments of a non-negative function, F(η) ≡ 1
2
√

η
S(

√
η), as

noted in equation (37), they must satisfy the moment problem constraints [11]:

∫ ∞

0
dη ησ


 Q∑

ρ=0

Cρ ηρ




2

F(η) > 0 (73)

for arbitrary C’s (not all identically zero) and Q � 0. Because this is a Stieltjes function,
σ = 0, 1.

The above integral expression becomes the quadratic form expression

Q∑
ρ1,ρ2=0

Cρ1 µσ+ρ1+ρ2 Cρ2 > 0. (74)

Substituting the moment equation relation in equation (70), we obtain
ms∑
,=1

A
(σ)

, [C;E] µ, < B(σ)[C;E] (75)

where

A
(σ)

, [C;E] ≡ −
Q∑

ρ1,ρ2=0

Cρ1 M̂σ+ρ1+ρ2,,(E) Cρ2 (76)

and

B(σ)[C;E] ≡
Q∑

ρ1,ρ2=0

Cρ1 M̂σ+ρ1+ρ2,0(E)Cρ2 . (77)

The physical energies, and corresponding missing moments, are those that satisfy all of
the linear inequalities in equation (75), for arbitrary C’s, and Q. In practice, at a given order, Q,
for any E value, we can define an optimal (finite) set of C-cutting vectors which tell us if there
exists a missing moment polytope solution, UC;E , to the corresponding linear equations. This
is done through the eigenvalue moment method [8, 9], which uses basic linear programming
[12] to implement this cutting procedure. The nonexistence of UC;E tells us that the associated
energy value is unphysical. The existence of UC;E tells us that it may be a physical energy
value. By increasing the order systematically, the feasible (i.e. physically possible) energy
intervals decrease in size. Their endpoints define the lower and upper bounds to the associated
discrete state energy (which must lie within the interval).

So long as S6 �= 0, all of the preceding formalism holds, and EMM must be implemented
on the four-dimensional, unconstrained missing moment, formulation represented in
equation (70).

The results of this analysis are noted in table 1. We only quote the results for the
first two discrete states. Note that Pmax denotes the maximum number of moments used,
2Q + σ � Pmax. The data in table 1 is for θ �= θR ≈ −0.5. As θ → θR , the presence of small
denominators makes the accuracy problematic, as Q is increased. However, the tightness of
the bounds does appear to increase as θ → θR , which is consistent with the underlying theory.
In table 2 we can cleanly (i.e. without introducing small denominators) define the moment
problem theory along the anti-Stokes angle, yielding fantastically superior bounds.

If we take S6 = 0, we recognize from equation (2) that this corresponds to letting
θ coincide with the anti-Stokes line for rapid, asymptotic decrease of the wavefunction.
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Table 1. Bounds for the discrete states of P 2 − (iX)4.

θ Pmax E
(L)
0 < E0 < E

(U)
0 E

(L)
1 < E1 < E

(U)
1

−0.3 25 1.477 149 081 9 < E0 < 1.477 150 900 9 6.003 345 003 1 < E1 < 6.003 395 148 0
−0.3 30 1.477 149 728 3 < E0 < 1.477 149 761 9 6.003 385 656 5 < E1 < 6.003 386 467 4
−0.4 25 (23 for E1) 1.477 149 743 1 < E0 < 1.477 149 807 1 6.003 352 613 1 < E1 < 6.003 454 992 1

Table 2. Bounds for the discrete states of P 2 − (iX)4, along anti-Stokes angle, θR = − π
6 .

Pmax E
(L)
0 < E0 < E

(U)
0 E

(L)
1 < E1 < E

(U)
1

5 1.05 < E0 < 1.8
10 1.470 < E0 < 1.482 5.6 < E1 < 8.0
15 1.477 11 < E0 < 1.477 19 5.999 24 < E1 < 6.012 20
20 1.477 149 6 < E0 < 1.477 150 0 6.003 367 < E1 < 6.003 444
25 1.477 149 752 < E0 < 1.477 149 756 6.003 385 96 < E1 < 6.003 386 40
30 1.477 149 753 573 < E0 < 1.477 149 753 588 6.003 386 082 98 < E1 < 6.003 386 084 78

E
(L)
2 < E2 < E

(U)
2 E

(L)
3 < E3 < E

(U)
3

15 11.6 < E2 < 16.0
20 11.8010 < E2 < 11.806 6 18.17 < E3 < 18.65
25 11.802 425 < E2 < 11.802 455 18.4572 < E3 < 18.459 9
30 11.802 433 57 < E2 < 11.802 433 65 18.458 807 < E3 < 18.458 827

Now the associated moment equation reduces greatly in order, from 4 to 1! That is,
equations (39)–(40) become

S′(0)
2

δρ,0 + µ(ρ − 1)

[
−(2ρ + 1) +

3(2ρ + 1)2

2
− (2ρ + 1)3

2

]
+ µ(ρ)[−2C2E(2ρ + 1)]

+ µ(ρ + 1)

[
E2S2

2

ρ + 1

]
+ µ(ρ + 2)[−4C6 − 2C6(2ρ + 1)] = 0

and

ES2µ(0) = ∓J (0) (78)

for S6 = 0, or θ = θR = −π
6 . All of the previous formalism can be implemented, yielding the

associated M̂ coefficients.
For the special anti-Stokes angle case, the convergence rate of the bounds is much faster,

as shown in table 2.

3. The general −(iX)N potential

We now consider the generic case for the −(ix)N Schrödinger equation, extended into the
complex-z plane

−� ′′(z) − (iz)N�(z) = E�(z). (79)

Along the z = ξe±iθ rays (ξ � 0), the Schrödinger equation becomes

� ′′
R(ξ) + iNξN ei(N+2)θ�R(ξ) + E e2iθ�R = 0 (80)

and

� ′′
L(ξ) + (−i)NξNe−i(N+2)θ�L(ξ) + Ee−2iθ�L(ξ) = 0 (81)

along the R (right) and L (left) wedges, respectively.
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In accordance with the representation in equation (8), �(ξ)≡A(ξ)� ′′(ξ) + B(ξ)� ′(ξ) +
C(ξ)�(ξ) = 0, we have A = 1, B = 0, C(ξ) = ξNe±i[(N+2)θ+ Nπ

2 ] + Ee±2iθ . The real and
imaginary parts of the C(ξ) coefficient function become

CR(ξ) = ξNC+
N+2 + EC2 (82)

and

CI = ±ξNS+
N+2 ± ES2. (83)

We define C+
N+2 = cos

[
(N + 2)θ + Nπ

2

]
, and S+

N+2 = sin
[
(N + 2)θ + Nπ

2

]
, where, as before,

Cn = cos(nθ), Sn = sin(nθ) (± is for R (right) and L (left)).
When N is even, C+

N+2 = (−1)
N
2 CN+2 and S+

N+2 = (−1)
N
2 SN+2. When N is odd,

C+
N+2 = (−1)

N+1
2 SN+2 and S+

N+2 = (−1)
N−1

2 CN+2.
The S, P, J equations become

S′′(ξ) − 2P(ξ) + 2
(
ξNC+

n+2 + EC2
)
S(ξ) = 0 (84)(±ξNS+

N+2 ± ES2
)
S(ξ) − J ′(ξ) = 0 (85)

and

P ′(ξ) + (ξNC+
n+2 + EC2)S

′(ξ) − 2
(±ξNS+

N+2 ± ES2
)
J (ξ) = 0. (86)

The U,V,W moment equations become

−δp,0S
′(0) + δp,1S(0) + p(p − 1)U(p − 2) − 2V (p)

+ 2[C+
N+2U(p + N) + EC2U(p)] = 0 (87)

±S+
N+2U(p + N)±ES2U(p) + [δp,0J (0) + pW(p − 1)] = 0 (88)

and

−δp,0P(0) − pV (p − 1) + C+
N+2[−(p + N)U(p + N − 1)] + EC2[−δp,0S(0)

−pU(p − 1)] − 2[±S+
N+2W(p + N)±ES2W(p)] = 0. (89)

As before, equation (88) really contains two separate relations. One, when p = 0, serves
to constrain the U moments

S+
N+2U(N) + ES2U(0) = ∓J (0) (90)

the other, when p � 1, serves to generate the W moments from the U’s (i.e. take p → p + 1
in equation (88))

W(p) = ∓
(
S+
N+2U(p + N + 1) + ES2U(p + 1)

)
p + 1

. (91)

We can substitute for V (i.e. equation (87)) and W (i.e. equation (91)), in equation (89),
reducing it into one moment equation for the U’s (in addition to equation (90))

−S(0)δp,2 +
S′(0)

2
δp,1 − P(0)δp,0 − C2ES(0)δp,0 + U(p − 3)

[
−p +

3p2

2
− p3

2

]

+ U(p − 1)[−2pC2E] + U(p + 1)

[
2E2S2

2

p + 1

]
+ U(p + N − 1)

[−NC+
N+2

− 2pC+
N+2

]
+ U(p + N + 1)

[
2ES2S

+
N+2

p + 1
+

2ES2S
+
N+2

p + N + 1

]

+ U(p + 2N + 1)

[
2S+

N+2
2

p + N + 1

]
= 0. (92)
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When N = 2m = even, the U moment equation separates into distinct relations for the
even and odd order moments. When N = odd, this separation does not happen, and one must
work with the U-moment equation directly.

For the N = 2m case, as explained in the context of the −(ix)4 potential, only the even
order moment relations will yield eigenenergy bounds. Taking µ(ρ) ≡ U(2ρ), as before, the
µ-moment equation becomes (i.e. take p = 2ρ + 1 in equation (92))

S′(0)
2

δρ,0 + µ(ρ − 1)

[
−(2ρ + 1) +

3(2ρ + 1)2

2
− (2ρ + 1)3

2

]
+ µ(ρ)[−2C2E(2ρ + 1)]

+ µ(ρ + 1)

[
E2S2

2

ρ + 1

]
+ µ(ρ + m)

[−NC+
N+2 − 2C+

N+2(2ρ + 1)
]

+ µ(ρ + m + 1)

×
[
ES2S

+
N+2

(
1

ρ + m + 1
+

1

ρ + 1

)]
+ µ(ρ + 2m + 1)

[
S+
N+2

2

ρ + m + 1

]
= 0.

(93)

We note that through equation (60), JR,L(0) and S′
R,L(0) are linearly related

(a consequence of assuming PT invariance). However, through the constraint in equation
(90), JR,L(0) is determined by the corresponding U-moments. Thus, these boundary terms
are completely determined by the {U(0), U(N)} moments.

If S+
N+2 �= 0, and N = odd, taking note of the previous remarks, the independent variables

become {U(0), . . . , U(2N), S(0), P (0)}, which are 2N + 3 in number (before imposing any
normalization).

Similarly, if S+
N+2 �= 0, and N = 2m, then the number of independent variables is 2m + 1

(i.e. the moments {µ(0), . . . , µ(2m)}).
By taking θ = θR (i.e. equation (2)), or S+

N+2 = 0, we can significantly reduce the
number of independent variables; and thereby increase the convergence rate of the generated
bounds. Under this simplification, the U moment equation now involves the N + 1 independent
variables {U(0), . . . , U(N−2), S(0), P (0)}, before normalization; and theµmoments involve
m independent variables, {µ(0), . . . , µ(m− 1)} (before imposing the normalization condition
which brings it down to m − 1).

The corresponding moment equations become

−S(0)δp,2 +
S′(0)

2
δp,1 − P(0)δp,0 − C2ES(0)δp,0 + U(p − 3)

[
−p +

3p2

2
− p3

2

]

+ U(p − 1)[−2pC2E] + U(p + 1)

[
2E2S2

2

p + 1

]
+ U(p + N − 1)[−NC+

N+2 − 2pC+
N+2] = 0 (94)

and

S′(0)
2

δρ,0 + µ(ρ − 1)

[
−(2ρ + 1) +

3(2ρ + 1)2

2
− (2ρ + 1)3

2

]
+ µ(ρ)[−2C2E(2ρ + 1)]

+ µ(ρ + 1)

[
E2S2

2

ρ + 1

]
+ µ(ρ + m)[−NC+

N+2 − 2C+
N+2(2ρ + 1)] = 0. (95)

These equations hold both for the right and left wedges, provided we make explicit the
reference to a particular wedge. Thus, S(0) → SR,L(0), P(0) → PR,L(0), S′(0) → S′

R,L(0),
and U(p) → UR,L(p), etc.
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3.1. Recursive expression for N = odd, U-moment equation

For completeness, we detail the generation of the moment-missing moment relation required
in implementing the EMM algorithm for generating bounds. We focus only on the moment
formulation represented in equation (94), for θ = θR. As noted, the ensuing EMM analysis
will generate the fastest bounds in this case.

From equation (94), all of the moments are explicitly, linearly, dependent on the
{UR(0), . . . , UR(N − 2)} moments, and the boundary terms {SR(0), PR(0), S′

R(0)}

UR(p) =
N+1∑
,=0

M̃p,,(E)χ, (96)

where

χ, =



UR(,) 0 � , � N − 2
SR(0) , = N − 1
PR(0) , = N

S′
R(0) , = N + 1.

(97)

The M̃ coefficients satisfy equation (94) with respect to the p-index, for fixed ,

−δ,,N−1δp,2 +
δ,,N+1

2
δp,1 − δ,,Nδp,0 − C2Eδ,,N−1δp,0 + M̃p−3,,(E)

[
−p +

3p2

2
− p3

2

]

+ M̃p−1,,(E) [−2pC2E] + M̃p+1,,(E)

[
2E2S2

2

p + 1

]
+ M̃p+N−1,,(E)

[−NC+
N+2 − 2pC+

N+2

] = 0 (98)

p � 0.
In addition, the M̃’s must satisfy the initialization conditions

M̃,1,,2 = δ,1,,2 (99)

for 0 � ,1 � N − 2 and 0 � ,2 � N + 1.
From equation (60) S′

R(0) = 2S1
C1

JR(0), and from equation (90), JR(0) = −ES2 UR(0),
under the assumption S+

N+2 = 0. Combining these, and substituting into equation (96) yields

UR(p) =
N∑

,=0

Mp,,(E)χ, (100)

where

Mp,,(E) =

M̃p,0 − 2ES1S2

C1
M̃p,N+1 if , = 0

M̃p,, if , �= 0.
(101)

One can now proceed as in the −(ix)4 case and impose a similar normalization and EMM
implementation. Note that all of the χ,’s in the above linear relation are positive quantities.

In table 3 we give bounds on the first two discrete states for N = 3, 5, 7. We have
included N = 3 in order to compare with the result of Handy [4], and Handy and Wang [10],
which corresponds to a different complex-rotation EMM implementation. The results here
are superior by at least two decimal places.
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Table 3. Bounds for the discrete states of P 2 − (iX)N, along anti-Stokes angle, θR = −N−2
N+2

π
2 .

N Pmax (for E1) E
(L)
0 < E0 < E

(U)
0 E

(L)
1 < E1 < E

(U)
1

3 28 (27) 1.156 267 065 7 < E0 < 1.156 267 077 2 4.109 227 < E1 < 4.109 231
5 24 (22) 1.908 244 < E0 < 1.908 273 8.5837 < E1 < 8.5902
7 25 (20) 3.068 43 < E0 < 3.068 73 15.01 < E1 < 16.59

Table 4. Bounds for the discrete states of P 2 − (iX)N, along anti-Stokes angle, θR = −N−2
N+2

π
2 .

N Pmax (for E1) E
(L)
0 < E0 < E

(U)
0 E

(L)
1 < E1 < E

(U)
1

6 30 (28) 2.439 346 483 9 < E0 < 2.439 346 488 3 11.881 564 834 < E1 < 11.881 564 915 6
8 30 (23) 3.796 474 882 2 < E0 < 3.796 474 885 8 20.735 611 < E1 < 20.735 854
10 29 (22) 5.553 309 963 9 < E0 < 5.553 310 069 8 32.807 78 < E1 < 32.814 56

3.2. Recursive expression for N = 2m (even), µ moment equation

In this case, we have

µR(ρ) =
m∑

,=0

M̃ρ,,(E)χ, (102)

where

χ, =
{

µR(,) 0 � , � m − 1
S′
R(0) , = m.

(103)

The M̃’s must satisfy equation (95) with respect to the ρ-index

δ,,m

2
δρ,0 + M̃ρ−1,,(E)

[
−(2ρ + 1) +

3(2ρ + 1)2

2
− (2ρ + 1)3

2

]
+ M̃ρ,,(E) [−2C2E(2ρ + 1)]

+ M̃ρ+1,,(E)

[
E2S2

2

ρ + 1

]
+ M̃ρ+m,,(E)

[−NC+
N+2 − 2C+

N+2(2ρ + 1)
] = 0 (104)

in addition to the initialization conditions

M̃,1,,2 = δ,1,,2 (105)

for 0 � ,1 � m − 1 and 0 � ,2 � m.
Finally, incorporating the constraint of S′

R(0) on µ (0) (i.e. S′
R(0) = − 2ES1S2

C1
µ(0)), we

obtain

µR(ρ) =
m−1∑
,=0

Mρ,, µR(,) (106)

where

Mρ,,(E) =

M̃ρ,0 − 2ES1S2

C1
M̃ρ,m if , = 0

M̃ρ,, if , �= 0.
(107)

In table 4 we give bounds on the first two discrete states for N = 6, 8, 10. As is clear,
upon comparing with the data in table 3, the bounds for the N = even case, based upon the
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µ-EMM formalism, converge much faster than those for the N = odd case, based on the
U-EMM analysis. This cannot be avoided.

4. Conclusion

We have extended the EMM formalism to the case of discrete states with non-Real support.
The primary focus of this work is to emphasize the theoretical/analytical modifications of
the original work by Handy [4], in order to accomodate bound state problems on complex
contours.

Bounding methods are generally more difficult to formulate, and apply, than do estimation
methods (i.e. numerical integration). Furthermore, the ‘tightness’ of the bounds can be
inferior (at a comparable ‘expansion’ order) than the numbers generated by estimation
methods. However, bounding methods are inherently more reliable in terms of their theoretical
predictions, than estimation methods, since they clearly impose constraints on the physical
answer. Such properties are useful in dealing with strong coupling/singular perturbation-type
systems, where different computational methodologies can yield very different answers. The
most famous of these is the quadratic Zeeman effect for superstrong magnetic fields [9].
Application of EMM to this problem confirmed the estimation methods of LeGuillou and
Zinn-Justin [13], in comparison to many other methods.

Whereas several bounding theories have been developed over the last few decades, there
are very few that yield converging bounds to the physical answer (albeit for the low-lying
states). Further still, there are even fewer such methods that can yield converging bounds
to non-Hermitian Hamiltonians. A very recent example of the interest in such problems is
the work of Abramov et al [14], which focuses on bounding complex energies and resonant
states. By way of contrast, the more recent work of Handy [5], and Handy et al [6], generates
converging eigenenergy bounds to various, non-Hermitian, complex energy problems. Still
more recent works extend the EMM philosophy to generate converging bounds to complex
Regge-pole solutions [15].

The use of a moments’ representation makes EMM suitable for solving singular
perturbation-type problems. This is because its linear programming formulation (i.e.
equations (73)–(75)) is inherently an affine map invariant variational procedure [16], making
EMM sensitive to delicate multiscale dependencies inherent to singular systems. This also
underscores its deep connection with wavelet analysis [16, 17].

With regard to the problems examined here, other, estimation-analysis type, works have
recently appeared yielding excellent results for the eigenenergies. These include the works by
Bender and Wang [18], Dorey et al [2, 3] and Shin [19].

These works notwithstanding, from a purely numerical perspective, EMM can offer
impressive accuracy. The numerical implementation can be done to any desired precision,
although our results were done only to fifteen decimal place accuracy (which does not
necessarily coincide with the tightness of the bounds). We could have easily doubled the
accuracy of all the results appearing in the tables.

The tightness of the bounds, at a fixed Pmax, decreases with increasing energy level. This
is a practical limitation which makes the method relevant for the low-lying states; although
with the advent of more powerful computers, one can easily examine progressively higher
energy level states.

Another fundamental feature of the EMM procedure is its dependency on a non-negative
(‘positivity’) formulation of quantum mechanics. The novel use of the differential system in
equations (9)–(16), introduces a significant variation to conventional formulations of quantum
mechanics (in one dimension). We believe that the focus on ‘positivity’ as a quantization tool
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will impact other areas as well, particularly in the context of certain Wigner-transform-related
issues currently under consideration.

We believe that EMM theory, despite its current limitation to multidimensional rational
fraction potential systems (which, nevertheless, correspond to a significantly large class of
problems), represents a radically new, and powerful, alternative quantization formulation, of
particular relevance to singular systems.

The formalism developed here now opens up the extension of EMM to symmetry breaking
solutions for such potentials as −(iX)N + iaX, and any other rational fraction complex
potential.
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